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Abstract: Until recently, most U.S. Census Bureau data products used traditional statistical disclosure 
limitation (SDL) methods such as cell or item suppression, data swapping, input noise injection, and 
censoring to protect respondents’ confidentiality. In response to developments in mathematics and 
computer science since 2003 that have significantly increased the risk of reconstruction and re-
identification attacks, the Census Bureau is developing formally private SDL methods to protect its data 
products. These methods provide mathematically provable protection for respondent data and allow 
policy makers to manage the tradeoff between data accuracy and privacy protection—something 
previously done by technical staff. The first Census Bureau product to use formal methods for privacy 
protection was OnTheMap, a web-based mapping and reporting application that shows where workers 
are employed and where they live. Recent research for OnTheMap is implementing formal privacy 
guarantees for businesses to complement the existing formal protections for individuals. Research is 
underway to improve the disclosure limitation methods for the 2020 Census of Population and Housing, 
the American Community Survey, and the 2022 Economic Census. For each of these programs, we are 
developing new state-of-the-art privacy protection approaches based on formal mechanisms that have 
been vetted by the scientific community. There are many challenges in adopting formally private 
algorithms to datasets with high dimensionality and the attendant sparsity. In addition to formally private 
methods that allow senior executives to set the privacy-loss budget, our implementations will feature 
adjustable “sliders” for allocating the privacy-loss budget among related statistical products. The Census 
Bureau is implementing the settings for the privacy-loss budget and these sliders based on the decisions 
of the Census Bureau’s Data Stewardship Executive Policy Committee. 
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1 Overview: Disclosure Limitation at the U.S. Census Bureau Today 
The U.S. Census Bureau views disclosure limitation not just as a research interest, but 
as an operational imperative. The Census Bureau’s hundreds of surveys and censuses of 
households, people, businesses, and establishments yield high quality data and derived 
statistics only if the Census Bureau maintains effective data stewardship and public 
trust.  
The Census Bureau previously used traditional statistical disclosure limitation (SDL) 
techniques such as top- and bottom-coding, suppression, rounding, binning, noise 
injection, and sampling to preserve the confidentiality of respondent data. The Census 
Bureau is currently transitioning from these methods to modern SDL techniques based 
on formally private data publication mechanisms. 

1.1 Legal Requirements 
The Census Bureau collects confidential information from U.S. persons and businesses 
under the authority of Title 13 of the U.S. Code. Once collected, the confidentiality of 
that data is protected specifically by 13 USC §9, which prohibits: 

(i) Using the information furnished under the provisions of this title for any 
purpose other than the statistical purposes for which it is supplied; or 

(ii) Making any publication whereby the data furnished by any particular 
establishment or individual under this title can be identified; or 

(iii) Permitting anyone other than the sworn officers and employees of the 
Department or bureau or agency thereof to examine the individual records.  

The privacy protections required by Title 13 are determined by the Census Bureau. Data 
users, including the Department of Justice and other government agencies, may be 
consulted regarding the criteria that determine fitness for use. Such consultation always 
respects the statistical-use-only requirement in the statute. 
Some publications are further protected by Title 26 of the U.S. Code, which protects the 
federal tax information (FTI) used by the Census Bureau in the preparation of statistical 
products.  
Confidentiality protection is intimately related to the statutory requirement that the 
published data be used for statistical purposes only. The definitions of “statistical 
purpose” and “nonstatistical purpose” were strengthened in Title III of the Foundations 
for Evidence-Based Policymaking Act of 2018, which is known as the Confidential 
Information Protection and Statistical Efficiency Act of 2018 (CIPSEA). 
Additionally, the Department of Commerce (2017), in which the Census Bureau is 
housed, has issued directives regarding the protection of personally identifiable 
information (PII) and business identifiable information (BII).  These directives largely 
mirror those issued by other government agencies and prohibit release of information 
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that can be used “to distinguish or trace an individual’s identity, such as their name, 
social security number, biometric records, etc., alone or when combined with other 
personal or identifying information which is linked or linkable to a specific individual, 
such as date and place of birth, mother’s maiden name, etc.”  

1.2 Legacy methods supporting statistical disclosure limitation (SDL) 
Historically, the Census Bureau has primarily used information reduction and data 
perturbation methods to support SDL (Lauger et al., 2014). Information reduction 
methods include top- and bottom-coding, suppression, rounding or binning, and 
sampling collected units for release in public use microdata files. Data perturbation 
methods include swapping, legacy noise injection systems, and partially and fully 
synthetic database construction. These legacy approaches start with the premise that 
there are specific data elements that must be protected (e.g., a person’s income). A 
technical analyst chooses an approach from the assortment of available SDL methods 
that is likely to protect the data without resulting in too much damage to the published 
data accuracy. Usually, the selection of SDL method takes into consideration the 
intended uses of the published data along with assumptions about the kind of external 
data an intruder might have, and the types of privacy attacks an intruder might attempt. 
These ad hoc approaches do not offer formal guarantees of data confidentiality. That is, 
there is no mechanism for quantifying how much privacy is being leaked from all 
publications based on a particular confidential database, or how one publication might 
interact with another publication or external data to create additional privacy risk. 
Furthermore, as the parameters of these legacy methods and their impact on the resulting 
accuracy of the data often needed to be kept confidential, there was limited opportunity 
for scientific scrutiny of their implementation or their effects. 

1.3 Formal privacy approaches 
Formal privacy methods take a different approach to protecting confidential 
information. Instead of starting with a list of confidential values to protect, an ad hoc 
collection of protection mechanisms, and ad hoc assumptions about attack models, the 
formal approach starts with a mathematical definition and framework for quantifying 
privacy risk, which permits the formulation of mathematically provable privacy 
guarantees against unwanted inference. Next, it implements mechanisms for publishing 
mathematical functions (typically called queries) based on the confidential data that are 
provably consistent with the formal privacy definition. Thus, data tables released by the 
statistical agency are actually modeled as a series of queries applied to the confidential 
data. Surrogates for public use microdata files can also be generated in this manner: 
instead of sampling the actual respondent data, queries are used to create formally 
private synthetic data. This is commonly done by first modeling the confidential data, 
then using the model to generate synthetic data, as discussed below. 
Differential privacy (Dwork et al., 2006) is the most developed formal privacy method. 
It begins by specifying the structure of the confidential database to be protected, 𝐷𝐷. In 
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computer science, this is called the database schema; in statistics, it is referred to as the 
sample space. Two databases, 𝐷𝐷1 and 𝐷𝐷2, with the same schema are adjacent if the 
appropriately defined distance between them is, at most, unity. Leaving the technical 
details aside, say |𝐷𝐷1 − 𝐷𝐷2| ≤1. The universe of tables to be published from 𝐷𝐷 is 
modeled as a set of queries on 𝐷𝐷, say 𝑄𝑄. An element of 𝑄𝑄, say 𝑞𝑞, is a single query on 𝐷𝐷. 
A randomized algorithm, 𝐴𝐴, takes as inputs 𝐷𝐷, 𝑞𝑞, and an independent random variable. 
The output of 𝐴𝐴(𝐷𝐷, 𝑞𝑞) is the statistic to be published, say 𝑆𝑆, which is a measureable set 
in the probability space defined by the independent random variable, say 𝐵𝐵. A 
randomized algorithm 𝐴𝐴 for a publication system for releasing all of the queries in 𝑄𝑄 is 
𝜀𝜀-differentially private if, for all 𝐷𝐷1 and 𝐷𝐷2, with the same database schema and 
|𝐷𝐷1 − 𝐷𝐷2| ≤1, for all 𝑞𝑞 ∈ 𝑄𝑄, and for all 𝑆𝑆 ∈ 𝐵𝐵: 

Pr[𝐴𝐴(𝐷𝐷1, 𝑞𝑞) ∈ 𝑆𝑆] ≤ 𝑒𝑒𝜀𝜀 𝑃𝑃𝑃𝑃[𝐴𝐴(𝐷𝐷2, 𝑞𝑞) ∈ 𝑆𝑆]. 
The probability is defined by the independent random variable that is used by the 
algorithm 𝐴𝐴, and not by the probability of observing any database 𝐷𝐷 with the allowable 
schema (likelihood function in statistics). 
There are alternative ways to define adjacent databases. For example, one method 
considers the databases adjacent if the record of a single person is added or removed 
from the database. Alternatively, the value of a single data item on a single record can 
be changed. Differential privacy is the mathematical formalization of the intuition that 
a person’s privacy is protected if the statistical agency produces its outputs in a manner 
insensitive to the presence or absence of that person’s data in the confidential database.  
In differential privacy, the value 𝜀𝜀 is the measure of privacy loss or confidentiality 
protection. If 𝜀𝜀 = 0, then the two probability distributions in the definition always 
produce exactly the same answer from adjacent inputs—there is no difference in the 
output of algorithm 𝐴𝐴 when given adjacent database inputs. Since the definition applies 
to the universe of potential inputs, and all databases adjacent to those inputs, all 
databases therefore produce exactly the same answer. Thus, the value 𝜀𝜀 = 0 guarantees 
no privacy loss at all (perfect confidentiality protection), but no data accuracy, since it 
is equivalent to releasing no data at all about the statistic 𝑆𝑆. In contrast, when 𝜀𝜀 = ∞, 
there is no confidentiality protection at all—full loss of privacy, but the statistic 𝑆𝑆 is 
perfectly accurate (identical to what would be produced directly from the confidential 
input database). Thus, 𝜀𝜀 can be thought of as the privacy-loss budget for the publication 
of the queries in 𝑄𝑄: the amount of privacy that individuals must give up in exchange for 
the accuracy that can be allowed in the statistical release. 
Varying the privacy-loss budget allows us to move along a privacy-accuracy Production 
Possibilities Frontier (PPF) curve, as it is known in the economics literature, or along 
the Receiver Operating Characteristics (ROC) curve, as it is known in the statistics 
literature (Abowd and Schmutte 2019). For any attacker model, the curve constrains the 
aggregate disclosure risk that any confidential data might be jeopardized through any 
feasible reconstruction attack, given all published statistics. This budget is the worst-
case limit to the inferential disclosure of any identity or item. In differential privacy, 
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that worst case is over all possible databases with the same schema for all individuals 
and items and over all external linking databases with any subset of that schema or those 
items.  
The privacy-loss budget applies to the combination of all released statistics that are 
based on the confidential database. As a result, the formal privacy technique provides 
protection into the indefinite future and is not conditioned upon additional data that the 
attacker may have.  
It is important to understand that the formal privacy protection offered by differential 
privacy is not absolute. Instead, it is a promise to individuals regarding the maximum 
amount of additional privacy loss that they may suffer as a result of a publication that is 
based in part on their confidential data.  
To prove that a privacy-loss budget is respected, one must quantify the privacy-loss 
expenditure of each algorithm used to query the confidential data. The collection of the 
algorithms considered altogether must satisfy the privacy-loss budget. This means that 
the collection of algorithms used must have known composition properties. 
Because the information environment is changing much faster today than when 
traditional SDL techniques were developed, it may no longer be reasonable to assert that 
a product is empirically safe given best-practice disclosure limitation prior to its release. 
Formal privacy models replace empirical disclosure risk assessment with designed 
protection. Resistance to all future attacks is a property of the design. 
Differential privacy, the leading formal privacy method, is robust to background 
knowledge of the data, allows for sequential and parallel composability and for arbitrary 
post-processing edits, and enables full transparency of the implementation’s source 
code. Differential privacy’s proven guarantees hold even if external data sources are 
published or released later. Other formal privacy methods quantify the privacy loss that 
can also be mathematically established and proven, but with more constrained properties 
(e.g., Haney et al., 2017). 

2 Expanding privacy protection for OnTheMap 
Randomized response, a survey technique invented in the 1960s, was the first 
differentially private mechanism implemented by any statistical agency. Of course, 
randomized response was not recognized as being differentially private until after 
differential privacy was invented. Randomized response is sometimes called local 
differential privacy. Unfortunately, it is difficult to adapt randomized response to 
modern survey collection methods (Wang et al., 2016). It is the Census Bureau’s 
experience that randomized response has a poor tradeoff between accuracy and privacy 
protection compared with the trusted curator model, and formal assessments of the 
expected additive errors of the two approaches confirm this (Kasiviswanathan et al., 
2011). Vadhan notes “We have a better understanding of the local model than [multi-
curator models where each trusted curator holds a portion of the confidential dataset.] 
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However, it still lags quite far behind our understanding of the single-curator model, for 
example, when we want to answer a set Q of queries (as opposed to a single query).” 
(Vadhan 2017) 
The first production application of a formally private disclosure limitation system by 
any organization was the Census Bureau’s OnTheMap (residential side only), a 
geographic query response system for studying residence and workplace patterns. 
The Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination 
Employment Statistics (LODES), the data used by OnTheMap, is a partially synthetic 
dataset that describes geographic patterns of jobs by their employment locations and 
residential locations as well as the connections between the two locations (U.S. Census 
Bureau, 2016). A job is counted if a worker is employed with positive earnings during 
the reference quarter and in the quarter prior to the reference quarter. These data and 
marginal summaries are tabulated by several categorical variables. The origin-
destination (OD) matrix is made available by ten different “labor market segments”. The 
area characteristics (AC) data–summary margins by residence block and workplace 
block–contain additional variables including age, earnings, and industry. The blocks are 
defined in terms of 2010 Census blocks, defined for the 2010 Census of Population and 
Housing. The input database is a linked employer-employee database, and statistics on 
the workplaces (Quarterly Workforce Indicators: QWI) are protected using noise 
injection together with primary suppression (Abowd et al., 2009, 2012).  
For OnTheMap and the underlying LODES data, the protection of the residential 
addresses is independent of the protection of workplaces. Protection of worker 
information is achieved using a formal privacy model (Machanavajjhala et al., 2008); 
work is in progress to protect workplaces using formal privacy as well (Haney et al., 
2017). 

3 SDL methods supporting the 2020 Census of Population and Housing 
The 2000 and 2010 Censuses of Population and Housing applied SDL in the form of 
record swapping, but this fact was not always obvious to data users. The actual swapping 
rate was kept confidential, as was the overall impact that swapping had on data accuracy 
(McKenna 2018).  
The Census Bureau successfully tested the feasibility of producing differentially private 
tabulations of the redistricting data (PL94-171) for the 2018 End-to-End Census Test, 
and is currently in the final stages of algorithm development, for the full-scale 
implementation of differentially private protections for the 2020 Census of Population 
and Housing.  
In October 2019 the Census Bureau re-released data from the 2010 Census using an 
early prototype for the 2020 Census Disclosure Avoidance System (DAS) (U.S. Census 
Bureau 2019). Called the 2010 Demonstration Data Products, this system was the 
subject of a December 2019 meeting of the Committee on National Statistics, where 
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attendees compared the statistical accuracy of these data products with previous data 
publications based on the 2010 Census. The source code used to prototype the 2010 
Demonstration Data Products was released the following month. This code base 
included 33,853 lines of Python programs and 1263 lines of configuration files. In July 
2020, the Census Bureau subsequently re-released the 2010 Census data protected using 
an updated version of the 2020 Census DAS, as the 2010 Demonstration Privacy-
Protected Microdata File 2020-05-27 (U.S. Census Bureau 2020). 
The differentially private mechanisms designed for the 2020 Census support the 
following products: 

• Public Law (PL) 94-171 files for redistricting; 
• Demographic Profiles and Demographic and Housing Characteristics files 

for demographic statistics pertaining to individuals  and housing units;  
• Detailed tabulations on race, ethnicity, and household composition; 
• Privacy Protected Microdata, the actual microdata from which published data 

products were tabulated; and 
• Noisy Measurements, the actual differentially private statistics used to create 

the consistent microdata, to allow researchers outside the Census Bureau to 
produce independent statistical products without suffering the unavoidable 
accuracy loss that results from the post-processing of the differentially private 
statistics to convert them back into microdata for tabulation.  

The Census Bureau has designed its differentially private algorithms to allow a selected 
number of queries based on the confidential data to be reported exactly. Such queries 
are called invariants. The Census Bureau currently plans the following invariants for 
the 2020 Census data publications:  

• Total number of people by state; 
• Total number of housing units (aggregate of occupied and vacant housing units) 

by block; and 
• Total number of group quarters within three-digit group quarters type by block. 

Group quarters types are defined in Table P43 (U.S. Census Bureau 2012).1 
While the inclusion of these invariants requires clarification of the formal privacy 
guarantees under differential privacy, they were considered necessary to permit public 
scrutiny of the state apportionment totals, and to permit the public-input component of 
the Local Update of Census Addresses (LUCA) program. 
 
 

                                                 
1 Table P43, “Group Quarters Population by Sex and Age by Group Quarters Type,” is in Segment 6 of 
the 2010 Census SF1. It can be downloaded from https://www2.census.gov/census_2010/04-
Summary_File_1/.  

https://www2.census.gov/census_2010/04-Summary_File_1/
https://www2.census.gov/census_2010/04-Summary_File_1/
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Key disclosure limitation challenges include: 
1. Ensuring consistency across tables by respecting the invariants enumerated 

above; 
2. Producing block-level microdata for use by the Census Bureau’s tabulation 

system to support production of traditional data products; 
3. As was true of historical systems like swapping, there is difficulty detecting 

coding errors, particularly as they relate to verifying privacy-loss guarantees; 
4. Determining how much of the privacy-loss budget should be spent per 

household; e.g., whether it should be proportional to household size; 
5. A lack of high-quality usage data from which to infer relative importance of data 

products; and 
6. The lack of public input data with which to develop and simulate the mechanism.  

Key policy-related challenges include: 
1. Communicating the global disclosure risk-data accuracy tradeoff effectively to 

the Data Stewardship Executive Policy Committee (DSEP) so that they can set 
the privacy-loss budget and the relative accuracy of different publications, 

2. Providing effective summaries of the social benefits of privacy vs. data accuracy, 
so that DSEP, in particular, can understand how the public views these choices. 

Throughout each decade, the Census Bureau also conducts special tabulations of small 
geographic areas such as towns. Those tabulations also impact privacy, and they also 
undergo SDL. 
 

4 SDL methods supporting the American Community Survey (ACS) 
The American Community Survey (ACS) is the successor to the long form survey of 
the Census of Population and Housing. The housing unit survey includes housing, 
household, and person-level demographic questions about a broad range of topics. There 
is a separate questionnaire for those residing in group quarters. The Census Bureau 
sends this survey to approximately 3.5 million housing units and group quarters each 
year and receives approximately 2.5 million responses. Weighted adjustments account 
for nonresponse, in-person interview subsampling, and controlling to pre-specified 
population totals. The ACS sample is usually selected at the tract level and is designed 
to allow reliable inferences for small geographic areas and for subpopulations, when 
cumulated across five years. ACS sampling rates vary across tracts. On average, a tract 
will have approximately thirty-five housing units and ninety people in the returned 
sample.  
The Census Bureau releases one-year and five-year ACS data products. Five-year tables 
are released either by block group or by tract. One-year tables have been released only 
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for geographies containing at least 65,000 people. A recent Census Bureau Disclosure 
Review Board (DRB) decision allowed some one-year tables to be released for areas of 
at least 20,000, due to the termination of the three-year data products. The Census 
Bureau also releases one-year and five-year Public-Use Microdata Sample (PUMS) files 
for both persons and housing units.  These PUMS contain samples of ACS microdata 
records (1% and 5% samples, respectively) with geographic detail limited to Public Use 
Microdata Areas (PUMA). PUMAs are special non-overlapping areas that partition each 
state into contiguous geographic units containing roughly 100,000 people.  
The feasibility of developing formally private protection mechanisms given current 
methodological and computational constraints, the large number of ACS variables, and 
the desire for small area estimates is undemonstrated. The Census Bureau is actively 
pursuing this research, seeking to leverage advances from other data products. The 
Census Bureau is also funding cooperative agreement opportunities for research into the 
use of formal privacy for surveys in general. As an intermediate step to provide 
additional privacy to ACS respondents, the Census Bureau is experimenting with the 
development of non-formally private synthetic data using statistical and machine 
learning models to replace the current SDL methods.  
Key disclosure avoidance challenges include: 

1. High dimensionality: there are roughly two hundred topical module variables 
with mixed continuous and categorical values, 

2. Geography, with estimates needed at the Census tract and block-group levels, 
3. Variable associations across people in the same household, 
4. Outliers in the economic variables, 
5. Survey weights due to sampling, nonresponse, and population controls. 

These challenges stem from high dimensionality combined with small sample sizes. 
Small geographies and sub-populations are important for data users, even if they do not 
always properly incorporate the sampling uncertainty when using these data. Tract-level 
and even block group-level data are critical for many applications, including the ballot 
language determinations in Section 203 of the Voting Rights Act. In addition to 
legislative districts, tabulations for many special geographies published by the Census 
Bureau, including cities and school districts, are built from smaller component 
geographies. 
The large margins of error for small geographies allow some scope for introducing error 
from SDL without significantly increasing total survey error. Modelling can introduce 
some bias in exchange for massive decreases in variances by borrowing strength from 
correlations. 
The research team is currently developing methods to protect ACS microdata utilizing 
synthesis models combined with a validation system. The overall approach is: 
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1. Build a chain of models, simulating each variable successively given the 
previous synthesized variables (Raghunathan et al., 2001). Currently, the team 
is assessing the use of classification trees for this purpose (Reiter, 2005); 

2. Create synthetic microdata from these models for all records and all variables, 
creating fully synthetic data; and 

3. Allow users to validate results from the synthetic microdata against the internal 
data. Validated results would have to meet the same standards for disclosure 
avoidance as all other public data releases and would be limited in quantity to 
statistics required for the stated purpose. 

As opposed to current ACS Public Use Microdata Samples (PUMS), this fully synthetic 
microdata would not use internal files that have already had SDL applied to them as its 
source; rather, the ACS program will generate an Internal Reference File (IRF) to serve 
as the source. The IRF can serve as a baseline dataset for assessing survey accuracy 
without the confounding impacts of SDL methods, and will allow the research team to 
evaluate the effects of synthesis on privacy and accuracy in isolation. 
The research team is considering other models for protecting tabular output, including 
hierarchical and spatio-temporal models. 
Validation servers, verification servers2, and access to the Federal Statistical Research 
Data Centers (FSRDCs) may be the solution for research questions for which the 
modernized SDL approach leads to reasonable uncertainty regarding the suitability of 
published data for a particular use. An advantage of the formally private methods being 
tested for both the 2020 Census and the ACS is that they permit quantification of the 
error contributed by the SDL; hence, the inferences drawn from these data can be 
corrected for the impact of the uncertainty added to protect privacy. Their suitability for 
use in a particular application can also be assessed without reference to the confidential 
data. This property of modernized SDL provides a means for applying objective criteria 
to a researcher’s claim that the published data are suitable or unsuitable for a particular 
use. 

5 SDL research supporting the 2022 Economic Census 
Every five years the Census Bureau sends survey forms to nearly four million U.S. 
business establishments, broadly representative of all geographic regions and most 
private industries, to conduct the Economic Census. The Economic Census is based on 
a complete enumeration for certain types of businesses, and sampling of other, mostly 
smaller, businesses. The Census Bureau defines an establishment as a specific economic 
activity conducted at a specific location, and asks companies to file separate reports for 

                                                 
2 Validation servers provide the data user with the results of their query calculated on the internal data 
with SDL performed on the result. Verification servers provide the data user with some measure of how 
confident they should be with the result of their query calculated on the synthetic data. 
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different locations and when multiple lines of activity are present at the same location. 
The Economic Census survey collects information from sampled establishments on the 
revenue obtained from product sales in the industries in which they operate, as well as 
information on employment, payroll, and other establishment characteristics. 
 
Key policy challenges include: 

1. Specifying the entity to be protected: multi-unit companies operate many 
establishments with different forms. From a legal standpoint, it is not entirely 
clear which entity (company, establishment, or something else) must be 
protected. 

2. Defining what constitutes sufficient protection. Requirements to protect fact-of-
filing may imply that whether a given business appears must be protected. 
However, it may not be necessary to protect certain business attributes that are 
in the public domain. 
 

Key disclosure avoidance challenges include: 
1. Outliers in the economic variables and generally high skewness; 
2. Sparsity of data in cells disaggregated down to the North American Industry 

Classification System (NAICS) subsector and county level; 
3. Hybrid sampling and enumeration design combined with an edit and imputation 

stage that complicate privacy models; 
4. Associations among economic variables that increase disclosure risk; and 
5. Complex publication schedules that require consistency over time and efficient 

allocation of privacy-loss budgets across releases. 
 
The Census Bureau’s disclosure modernization efforts for the Economic Census have 
followed two potentially complementary paths. Beginning in 2017, an interdisciplinary 
team at the Census Bureau partnered with academic colleagues to evaluate the feasibility 
of developing synthetic industry-level microdata. The methods under consideration are 
not formally private, but would allow publication of more detailed information while 
maintaining disclosure protections comparable to the cell suppression methods currently 
in use. Kim, Reiter, and Karr (2016) present methods of developing synthetic data on 
historic Economic Census data from the manufacturing sector. An inter-divisional team 
has applied two synthetic data models to 42 industries from the 2012 Economic Census 
covering eighteen economic sectors. Input data were limited to full-year reporter 
businesses (births, deaths, and seasonal businesses were excluded). The synthetic data 
were evaluated for fidelity in summary tabulations of items collected for all sectors. The 
team is currently evaluating the disclosure risk for these approaches. Kim and 
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Thompson are working on a separate synthetic data model that includes businesses that 
are part-year reporters.   
 
In 2020 an additional team began work to develop formally private disclosure avoidance 
methods appropriate to economic data in general, and the Economic Census in 
particular. Since the publication schedule does not require release of microdata, the team 
is exploring modifications of the differential privacy paradigm that could be directly 
applied to tabular summaries and yield provable privacy guarantees. Specifically, they 
are considering a variant of the model developed in Haney et al., (2017) as well as other 
approaches in the smooth sensitivity framework (e.g. Nissim, Raskhodnikova and 
Smith, 2007). The sparsity of the published tables may require a modification of these 
methods to ensure consistency and data quality while keeping privacy loss at acceptable 
levels. The team intends to develop methods applicable to the County Business Patterns 
and Economic Census First Look products, which have relatively simple structure. From 
there it will hopefully be possible to adapt those methods to more complex Economic 
Census products. 

6 Challenges and meetings those challenges 
In differential privacy, the commonly used flattened histogram representation of the 
universe is calculated as the Cartesian product of all potential combinations of responses 
for all variables. This representation is often orders of magnitude larger than the total 
population even when structural zeroes (impossible combinations of values of variables, 
such as grandmothers who are three years of age) are imposed. One promising approach 
is approximate differential privacy, where the limiting factor depends only on the 
logarithm of the inverse probability of algorithmic failure. 
Policy makers, including the Census Bureau’s DSEP, must have enough information 
about the privacy-loss/data accuracy trade-off to make an informed decision about 𝜀𝜀, 
and its allocation to different tabular summaries. In some cases, the chosen amount of 
noise injection from differential privacy may limit the suitability for use of the published 
statistics to more narrowly defined domains than has historically been the case. 
The strategy for producing the tabular summaries is to supply the official tabulation 
software with formally private synthetic data that reproduce all of the protected 
tabulations specified in the redistricting and summary file requirements. In generating 
high quality synthetic microdata, one needs to consider integer counts, non-negativity, 
unprotected counts (e.g., total state population), and structural zeroes. 
To execute this approach, the Census Bureau needs generic methods that will work on 
a broader range of datasets. In addition, it may be difficult to find meaningful 
correlations that are not represented in the model. To address this, the model must 
anticipate the types of analyses that data users might wish to conduct. As a result, better 
model-building tools are needed, as well as generic tools for correlating arbitrary models 
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with the ones used to build the synthetic data. Ongoing engagement with data users is 
also essential to help identify these intended uses of the published data. 
Reproducible-science methods will be required to use synthetic data effectively. 
Data are often collected with a complex sample design with considerable missing data 
and in panels of longitudinal data. Research is ongoing to ensure that weighted, 
longitudinal analysis using differentially private data will continue to produce “good 
results and good science” to the data users. 

7 Approaches to gauge data accuracy and usefulness 
There are multiple methods to assess data accuracy, also known as analytical (or 
inference) validity. Machanavajjhala et al. (2008) conducted experiments comparing 
differentially private synthetic data to the actual data for OnTheMap. They saw value in 
coarsening the domain to limit the number of “strange fictitious commuting patterns.” 
Karr et al. (2006) and Drechsler (2011) advocate calculating confidence interval 
overlaps for parameters of interest, whether univariate, bivariate, or multivariate.  
There is value in calculating all such metrics described above for parameter estimates 
calculated from: 

• non-perturbed data (exact counts) where we expect parity; and 
• parameter estimates that were not captured in the joint distributions modeled in 

the synthetic data, where one would not expect to uncover comparable results. 
Disclosure limitation is a technology. It shows the relationship between privacy loss, 
which is considered a public “bad”, and data accuracy, which is considered a public 
“good”. A differentially private system can publish extremely disclosive data. This 
happens if the privacy-loss budget is set very high. The extremely disclosive data will 
likely be very accurate. That is, inferences based on these data will be nearly identical 
to those based on the confidential data. But extremely disclosive, albeit formally private, 
data also permit a very accurate reconstruction of the confidential data relative to the 
reconstruction possible with smaller privacy-loss budgets.  
The teams at the Census Bureau working on formal privacy methods for statistical 
disclosure limitation have been charged by DSEP with developing technologies with 
adjustable parameters to control the privacy loss and data accuracy during 
implementation. Those technologies will be summarized with a variety of supporting 
materials. The Disclosure Review Board will make a recommendation regarding the 
appropriate formal privacy technology and parameter settings, including the privacy-
loss parameter 𝜀𝜀. The Data Stewardship Executive Policy Committee will review that 
recommendation and make the final determination. The published data will implement 
the recommendations of DSEP. Although more explicit than in previous censuses, this 
is the same chain of recommendation and approval that was used in 2000 and 2010. 



 
 

 14 

This transition to innovation involves significant retooling of methods for the Census 
Bureau’s career mathematical statisticians, computer scientists, subject matter experts, 
project and process managers, and internal stakeholders. This transition will help the 
Census Bureau lead similar innovation across the U.S. Federal Government and beyond. 
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